
A Systematic Analysis of the Juniper Dual EC Incident

Stephen Checkoway*, Shaanan Cohney†, Christina Garman‡, Matthew Green‡, Nadia Heninger†,
Jacob Maskiewicz§, Eric Rescorla§, Hovav Shacham§, Ralf-Philipp Weinmann¶

* University of Illinois at Chicago, † University of Pennsylvania, ‡ Johns Hopkins University,
§ UC San Diego, ¶ Comsecuris

Abstract
In December 2015, Juniper Networks announced that
unknown attackers had added unauthorized code to
ScreenOS, the operating system for their NetScreen VPN
routers. This code created two vulnerabilities: an authen-
tication bypass that enabled remote administrative access,
and a second vulnerability that allowed passive decryption
of VPN traffic. Reverse engineering of ScreenOS binaries
revealed that the first of these vulnerabilities was a con-
ventional back door in the SSH password checker. The
second is far more intriguing: a change to the Q parameter
used by the Dual EC pseudorandom number generator. It
is widely known [7, 33] that Dual EC has the unfortunate
property that an attacker with the ability to choose Q can,
from a small sample of the generator’s output, predict all
future outputs. In a 2013 public statement, Juniper noted
the use of Dual EC but claimed that ScreenOS included
countermeasures that neutralized this form of attack.

In this work, we report the results of a thorough inde-
pendent analysis of the ScreenOS randomness subsystem,
as well as its interaction with the IKE VPN key estab-
lishment protocol. Due to apparent flaws in the code,
Juniper’s countermeasures against a Dual EC attack are
never executed. Moreover, by comparing sequential ver-
sions of ScreenOS, we identify a cluster of additional
changes that were introduced concurrently with the in-
clusion of Dual EC in a single 2008 release. Taken as a
whole, these changes render the ScreenOS system vul-
nerable to passive exploitation by an attacker who selects
Q. We demonstrate this by installing our own parame-
ters, and showing that it is possible to passively decrypt
a single IKE handshake and its associated VPN traffic in
isolation without observing any other network traffic.

1 Introduction
Random number generation is critical to the implemen-
tation of cryptographic systems. Random numbers are
used for a variety of purposes, including generation of
nonces and cryptographic keys. Because generating a
sufficient quantity of true random numbers via physical
means is inconvenient, cryptographic systems typically
include deterministic pseudorandom number generators
(PRNGs) which expand a small amount of secret internal
state into a stream of values which are intended to be

indistinguishable from true randomness.
Historically, random number generators have been a

major source of vulnerabilities [6, 13, 16, 22, 36]. This
is because an attacker who is able to predict the output
of a PRNG will often be able to break any protocol im-
plementation dependent on it. For instance, they may
be able to predict any cryptographic keys (which should
remain secret) or nonces (which should often remain un-
predictable). Past PRNG failures have resulted from a
failure to seed with sufficiently random data [13, 16] or
from algorithms which are not secure, in the sense that
they allow attackers to recover the internal state of the
algorithm from some public output.

A number of Juniper NetScreen-branded VPN/Fire-
walls use the NSA-designed Dual EC PRNG [4, 21].
Dual EC has the problematic property that an attacker
who knows the discrete logarithm of one of the input pa-
rameters (Q) with respect to a generator point, and is able
to observe a small number of consecutive bytes from the
PRNG, can then compute the internal state of the gener-
ator and thus predict all future output. In December of
2015, Juniper reported [17] that at some point in 2012,
an attacker had modified the code in their version control
system to substitute an alternate value of Q in place of
the initial Q value generated by Juniper. In this paper, we
report on the impact of this change — based on extensive
reverse engineering and experimental testing — and of
the broader security properties of the Juniper NetScreen
PRNG design.

Summary of our findings. Our analysis shows that the
current Juniper ScreenOS PRNG implementation is vul-
nerable to efficient state recovery attacks conducted by
an attacker who selects the Q value. Surprisingly, this
finding is not an inevitable result of the known attacks on
Dual EC, but instead stems from a collection of design
choices made by Juniper in 2008.

Between ScreenOS 6.1 and 6.2.0r1, we identified a
constellation of changes made to both the PRNG and
IKE implementations that substantially predispose the
IKE/IPSec implementation to state recovery attacks on
the Dual EC generator. These changes, which were intro-
duced concurrently with the addition of Dual EC, create a
“perfect storm” of vulnerabilities that combine to produce
a highly effective single-handshake exploit against the



ScreenOS IKE implementation. Moreover, we identify
several implementation decisions that superficially appear
to reduce exploitability, but that on closer examination
actually facilitate the attack.

To validate the accuracy of our findings, we implement
a proof of concept exploit against a ScreenOS 6.2 device
and show that when the device is configured with a Q
parameter of our choosing, our attacks can efficiently de-
crypt VPN connections from a single handshake, without
seeing any other traffic. Moreover, we discuss the im-
pact of different IPSec versions and configurations on the
attack, and show that configuration decisions can substan-
tially affect the exploitability of the device, in some cases
rendering the device entirely secure.

Outline of the paper. The remainder of this paper is
structured as follows. In Section 2 we provide back-
ground on the Dual EC PRNG. In Section 3 we discuss
Juniper’s vulnerability disclosure and the research ques-
tions it raises. In Sections 4 and 5 we describe the details
of the ScreenOS PRNG and its interaction with the IKE
key exchange protocol. In Section 6 we describe a prac-
tical exploit of the NetScreen IPsec functionality under
the assumption that the attacker knows the discrete log of
Q. In Section 7, we discuss how one can remotely detect
vulnerable ScreenOS versions. In Section 8 we discuss
the broader implications of this issue.

2 Dual EC Background
In this section, we describe the Dual EC pseudoran-
dom number generator and the attack on it described
by Shumow and Ferguson [33], with some details on how
ScreenOS implements Dual EC.

Dual EC comes in a variety of forms which affect the
difficulty of the Shumow–Ferguson attack. There are
two slightly different NIST standards for Dual EC, which
also contain optional features. There are three standard
elliptic curves which can be used, and implementors are
free to make a number of software engineering choices.
For concreteness, we describe Dual EC as implemented
in Juniper’s ScreenOS below. For more details on other
forms of Dual EC, see Checkoway et al. [7].

Dual EC has three public parameters: the elliptic curve,
and two distinct points on the curve called P and Q.
ScreenOS uses the elliptic curve P-256 and sets P to be
P-256’s standard generator as specified in NIST Special
Publication 800-90A [28]. That standard also specifies
the Q to use, but ScreenOS uses Juniper’s own elliptic
curve point instead. The finite field over which P-256
is defined has roughly 2256 elements so points on P-256
consist of pairs of 256-bit numbers (x,y) that satisfy the
elliptic curve equation. The internal state of Dual EC is a
single 256-bit number s.

In ScreenOS, Dual EC is always used to generate 32
bytes of output at a time. Let x(·) be the function that re-

turns the x-coordinate of an elliptic curve point; ‖ be con-
catenation; lsbn(·) be the function that returns the least-
significant n bytes of its input in big-endian order; and
msbn(·) be the function that returns the most-significant
n bytes. Starting with an initial state s0, Dual EC gener-
ates 32 pseudorandom bytes output and a new state s2 as
follows,

s1 = x(s0P)

r1 = x(s1Q)

s2 = x(s1P)

r2 = x(s2Q)

output = lsb30(r1) ‖ msb2
(
lsb30(r2)

)
,

where sP and sQ denote scalar multiplication.
In 2007, Shumow and Ferguson [33] noted that if the

discrete logarithm e = logP Q (i.e., the integer e such that
eP = Q) were known, then seeing output would reveal
the Dual EC internal state. The key insight is that one
can obtain d = logQ P = e−1 mod n, where n is the group
order, and then multiplying the point s1Q by d yields the
internal state x(d · s1Q) = x(s1P) = s2. Although s1Q is
itself not known, 30 of the 32 bytes of its x-coordinate
(namely r1) is the first 30-bytes of output.

This insight gives rise to the simple procedure to re-
cover s2. For each of the 216 256-bit integers r such that
lsb30(r) equals the first 30-bytes of output, check if r is
a valid x-coordinate of a point on the curve.1 In other
words, find a point R such that x(R) = r. Roughly half of
the r values will be valid x-coordinates.2 For each such R,
compute s′ = x(dR) and r′ = x(s′Q). If the correct r = r1
is chosen, msb2

(
lsb30(r′)

)
will be equal to the last two

bytes of output and s′ = s2, the new internal state.
The one complication with the above procedure

is that there may be several values of r such that
msb2

(
lsb30(r′)

)
= lsb2(output) and each such r corre-

sponds to a potential internal state s′. In practice, this
is a minor complication as it’s exceedingly rare for there
to be more than three such r.

3 History of the Juniper Incident
After NIST recommended against the use of Dual EC [28]
in response to post-Snowden concerns about the default
value of Q, Juniper published a knowledge base arti-
cle [19] explaining their use of Dual EC in ScreenOS, the
operating system powering its NetScreen firewall appli-
ances, stating that although those products used Dual EC:

ScreenOS does make use of the
Dual_EC_DRBG standard, but is designed to

1This procedure is sometimes called point decompression and in-
volves computing a modular square root.

2Each r that is an x-coordinate of some point R is also an x-coordinate
of the point −R. It doesn’t matter which point is chosen as R and −R
differ only in the “sign” of their y-component.

2



not use Dual_EC_DBRG as its primary random
number generator. ScreenOS uses it in a way
that should not be vulnerable to the possible
issue that has been brought to light. Instead of
using the NIST recommended curve points it
uses self-generated basis points and then takes
the output as an input to FIPS/ANSI X.9.31
(sic) PRNG, which is the random number
generator used in ScreenOS cryptographic
operations.

The first of these countermeasures — self-generated ba-
sis points3 — is not completely satisfactory because it de-
pends on Juniper generating Q in such a way that nobody
knows its discrete log, which they have not verifiably
demonstrated. However, the second countermeasure —
if implemented correctly — defends against the current
publicly-known attacks on Dual EC because those attacks
rely on having Dual EC output rather than a one-way
function of that output, so even an attacker who knew the
discrete log of Q would be unable to recover the PRNG
state.

This was the situation in December 17, 2015 when
Juniper issued an out-of-cycle security bulletin [17] for
two security issues in ScreenOS:

• CVE-2015-77554 (“Administrative Access”)

• CVE-2015-77565 (“VPN Decryption”)

This announcement was particularly interesting be-
cause it was not the usual report of developer error, but
rather of malicious code which had been inserted into
ScreenOS by an unknown attacker:

During a recent internal code review, Juniper
discovered unauthorized code in ScreenOS that
could allow a knowledgeable attacker to gain
administrative access to NetScreen® devices
and to decrypt VPN connections. Once we
identified these vulnerabilities, we launched an
investigation into the matter, and worked to
develop and issue patched releases for the latest
versions of ScreenOS.

The “Administrative Access” vulnerability was deter-
mined to be a back door in the SSH [37] daemon that
would have allowed anyone who knew the correct pass-
word to log in with administrative access. This issue

3 While the Juniper article says “points”, actually only Q differs
from the NIST default values. Juniper’s implementation uses the default
P value

4http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2015-7755

5http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2015-7756

has been extensively discussed by Moore [27]. The sec-
ond issue, however, turns out to be far more technically
interesting. According to Juniper’s advisory:

VPN Decryption (CVE-2015-7756) may al-
low a knowledgeable attacker who can monitor
VPN traffic to decrypt that traffic. It is indepen-
dent of the first issue.

This issue affects ScreenOS 6.2.0r15 through
6.2.0r18 and 6.3.0r12 through 6.3.0r20. No
other Juniper products or versions of ScreenOS
are affected by this issue.

There is no way to detect that this vulnerability
was exploited.

While both Juniper’s advisory and the CVE itself are
short on details, comparison of the binaries for the vulner-
able and patched versions reveal that the relevant change
to the code is a change in the value of Q and the corre-
sponding test vectors [3]. The natural inference, therefore,
is that the attacker changed Q away from Juniper’s origi-
nal version (which is itself different from the default Q in
the standard) and that the patched version changes it back.
What makes this even more interesting is that — as noted
above — even a Q value for which the attacker knows
the discrete log should not lead to a passive decryption
vulnerability because the output is supposed to be filtered
through the ANSI X9.31 PRNG. This obviously raises
serious questions about the accuracy of Juniper’s 2013
description of their system, specifically:

1. Why does a change in Q result in a passive VPN
decryption vulnerability?

2. Why doesn’t Juniper’s use of X9.31 protect their
system against compromise of Q?

3. What is the history of the PRNG code in ScreenOS?

4. How was Juniper’s Q value generated?

5. Is the version of ScreenOS with Juniper’s authorized
Q vulnerable to attack?

We explore the answers to these questions in the fol-
lowing sections.

4 The ScreenOS Random Number Genera-
tor

In this section, we describe the results of our analysis of
the ScreenOS 6.2 PRNG cascade subroutines.6

Listing 1 shows the decompiled source code for the
ScreenOS PRNG version 6.2.0r1. Note that identifiers
such function and variable names are not present in the

6ScreenOS 6.3 is identical.

3

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7755
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7755
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7756
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7756


Listing 1: The core ScreenOS 6.2 PRNG subroutines.

1 void prng_reseed(void) {
2 blocks_generated_since_reseed = 0;
3 if (dualec_generate(prng_temporary, 32) != 32)
4 error_handler("FIPS ERROR: PRNG failure, unable to reseed\n", 11);
5 memcpy(prng_seed, prng_temporary, 8);
6 prng_output_index = 8;
7 memcpy(prng_key, &prng_temporary[prng_output_index], 24);
8 prng_output_index = 32;
9 }

10 void prng_generate(void) {
11 int time[2];
12
13 time[0] = 0;
14 time[1] = get_cycles();
15 prng_output_index = 0;
16 ++blocks_generated_since_reseed;
17 if (!one_stage_rng())
18 prng_reseed();
19 for (; prng_output_index <= 0x1F; prng_output_index += 8) {
20 // FIPS checks removed for clarity
21 x9_31_generate_block(time, prng_seed, prng_key, prng_block);
22 // FIPS checks removed for clarity
23 memcpy(&prng_temporary[prng_output_index], prng_block, 8);
24 }
25 }

binary; we assigned these names based on analysis of
the apparent function of each symbol. Similarly, specific
control flow constructs are not preserved by the compi-
lation/decompilation process. For instance, the for loop
on line 19 may in fact be a while loop or some other con-
struct in the actual Juniper source. Decompilation does,
however, preserve the functionality of the original code.
For clarity, we have omitted FIPS checks that ensure that
the ANSI X9.31 generator [1, Appendix A.2.4] has not
generated duplicate output.

Superficially, the ScreenOS implementation ap-
pears consistent with Juniper’s description: When
prng_generate() is called, it first potentially re-
seeds the X9.31 PRNG state (lines 16 − 18) via
prng_reseed(). When prng_reseed() is called, it
invokes the Dual EC DBRG to fill the 32-byte buffer
prng_temporary. From this buffer, it extracts a seed
and cipher key for the ANSI X9.31 generator. Once the
X9.31 PRNG state is seeded, the implementation then gen-
erates 8 bytes of X9.31 PRNG output at a time (line 21)
into prng_temporary, looping until it has generated
32 bytes of output (lines 19–24), using the global variable
prng_seed to store the ANSI X9.31 seed state, updating
it with every invocation of prng_generate_block().

However, upon closer inspection, the behavior
of the generator is subtly different. This is due
to two coupled issues: First, prng_reseed() and
prng_generate_blocks() share the static buffer

prng_temporary; secondly, when prng_reseed() is
invoked, it fills prng_temporary (line 3) and then
sets the static variable prng_output_index to 32
(the size of the Dual EC output).7 Unfortunately,
prng_output_index is also the control variable for
the loop that invokes the ANSI X9.31 PRNG in
prng_generate() at line 19. The consequence is that
whenever the PRNG is reseeded, prng_output_index
is 32 at the start of the loop and therefore no calls to the
ANSI X9.31 PRNG are executed. Thus, Dual EC output
is emitted directly from the prng_generate() function.

Another oddity is that in the default configuration,
one_stage_rng() always returns true so X9.31 is
reseeded on every call. There is an undocumented
ScreenOS command, set key one-stage-rng, which
is described by a string in the command-parsing data-
structure as “Reduce PRNG to single stage.” Invoking
this command effectively disables reseeding until this
setting is changed.

Ironically, when combined with the cascade bug de-
scribed above, disabling reseeding introduces a different
security vulnerability: because the first block emitted af-
ter reseed is the same as the data used for future blocks of
the ANSI X9.31 PRNG, an attacker who is lucky enough
to observe an immediate post-seed output can predict the

7The global variable reuse was first publicly noted by Willem
Pinckaers on Twitter https://twitter.com/_dvorak_/status/
679109591708205056, retrieved February 18, 2016.

4

https://twitter.com/_dvorak_/status/679109591708205056
https://twitter.com/_dvorak_/status/679109591708205056


rest of the PRNG stream until the next reseed even without
knowing logP Q.8

Interestingly, had prng_output_index not been used
in prng_reseed, the reuse of prng_temporary would
be safe. As described in section 8, the index variable used
in the for loop in prng_generate changed from a local
variable to the prng_output_index global variable be-
tween the final version of ScreenOS 6.1.0 and the first
version of 6.2.0.

5 Interaction with IKE
As suggested by the exploit description, the primary con-
cern with a Dual EC implementation is that an attacker
may be able to use public information emitted by the
PRNG to extract the Dual EC internal state, and use this
to predict future secret values. Because ScreenOS is not
only a firewall but also a VPN device, the natural target
is IKE (Internet Key Exchange) [15, 20], the key estab-
lishment protocol used for IPsec [24]. Surprisingly, the
existence of a Dual EC generator does not by itself imply
that Juniper’s IKE implementation is itself exploitable,
even in conditions where the attacker knows the Dual EC
discrete log. There are a number of parameters that affect
both the feasibility and cost of such an attack.

5.1 Overview of IKE
IKE (and its successor IKEv2) is a traditional DH-based
handshake protocol in which two endpoints (dubbed the
initiator and the responder) establish a Security Associ-
ation (SA) consisting of parameters and a set of traffic
keys which can be used for encrypting traffic. Somewhat
unusually, IKE consists of two phases:

• Phase 1 (IKEv1)/Initial Exchange (IKEv2): Used to
establish an “IKE SA” which is tied to the endpoints
but not to any particular class of non-IKE network
traffic.

• Phase 2 (IKEv1)/CREATE_CHILD_SA (IKEv2):
Used to establish SAs which protect non-IKE traffic
(typically IPsec). The IKE messages for this phase
are protected with keys established in the first phase.
This phase may be run multiple times with the same
phase 1 SA in order to establish multiple SAs (e.g.,
for different IP host/port pairs), but as a practical
matter many VPN connections compute only one
child SA and use it for all traffic.

For simplicity, we will use the IKEv1 terminology of
phase 1/phase 2 in the rest of this document.

8There are technical obstacles to overcome. X9.31 uses the current
time (parameter DT in the specification; implemented as the processor
cycle counter in ScreenOS) as an input to the PRNG. As long as the time
value can be guessed (or brute forced), the X9.31 generator’s output can
be predicted. As one-stage-rng is off by default and this command
that enables is is undocumented, we did not study this vulnerability in
depth.

IKE messages are composed of a series of “payloads”
such as KE (key exchange), Ni (initiator nonce), Nr (re-
sponder nonce), etc.

The first IKE phase consists of a Diffie–Hellman ex-
change in which both sides exchange DH shares and a
nonce, which are combined to form the derived keys. The
endpoints may be authenticated in a variety of ways in-
cluding a signing key and a statically configured shared
secret. The second IKE phase may involve a DH exchange
but may also just consist of an exchange of nonces, in
which case the child SA keys are derived from the shared
secret established in the first phase.

At this point, we have a conceptual overview of how
to attack IKE: Using the nonce in the first phase, reverse
Dual EC to compute the PRNG state; predict the DH
private key and use that to compute the DH shared secret
for the IKE SA; using the keys derived from the IKE
SA, decrypt the second phase traffic to recover the peer’s
nonce and public key (in the best case, the local nonce
and public key can be predicted); use those to compute
the shared secret for the second phase SA and thereby the
traffic keys. Use those keys to decrypt the VPN traffic.

However, while this is straightforward in principle,
there are a number of practical complexities and potential
implementation decisions which could make this attack
easier or more difficult (or even impractical) as described
below.

5.2 Nonce Size
The first question we must examine is whether the at-
tacker ever gets a complete Dual EC block. As Check-
oway et al. [7] describe in detail, it is only practical to
exploit Dual EC if provided with nearly a complete point
output. As specified, Dual EC emits only 30 bytes of
the 32-byte point, which requires the attacker to try ap-
proximately half of the remaining 216 values to find the
state, and the work factor goes up exponentially with the
number of missing bytes, so exploitation rapidly becomes
impractical the less of the point the attacker has.

Many reasonable implementation strategies could re-
sult in an attacker obtaining only small fractions of a
point. For example, unlike TLS, IKE has a variable-length
nonce, which is required to be between 8 and 256 bytes in
length [15, Section 5]. If a nonce length below 30 bytes
were used, it could significantly increase the amount of
work required to recover the Dual EC state

However, as of version 6.2 ScreenOS uses a 32-byte
nonce made from two successive invocations of Dual EC,
with the first supplying 30 bytes and the second supplying
2 bytes. As described above, this is nearly ideal from the
perspective of the attacker because it can use the first 30
bytes (the majority of the point) to determine possible
states, and then narrow the results by checking which
states produce the correct value for the remaining two

5



bytes. In practice, this usually results in 1 to 3 possible
states.

5.3 Nonces and DH Keys
Although the IKE messages contain both a nonce and a
DH share our analysis of Juniper’s IKE implementation
indicates that the KE payload containing the DH share is
encoded before the NONCE payload. If (as is natural),
the keys and nonces are generated in the same order as
they are encoded, then it will not be possible to use the
NONCE from one connection to attack that same con-
nection. This is because Dual EC state recovery only
allows you to predict future values, not recover past val-
ues. While not necessarily fatal to the attacker, because
nonces generated in one connection might be used to pre-
dict the DH private keys generated in some subsequent
connection; this would not be ideal from the attacker’s
perspective, especially if connection establishment is in-
frequent.

Conveniently for the attacker, however, ScreenOS also
contains a pre-generation feature that maintains a pool of
nonces and DH keys which can then be used in new IKE
connections rather than generating them in the critical
path (i.e., during the handshake). The pooling mechanism
is quite intricate and appears to be designed to ensure
that enough keys are always available while avoiding
consuming too much run time on the device.

Summarized briefly, independent FIFO queues are
maintained for nonces, each finite field DH group (MODP
768, MODP 1024, MODP 1536, and MODP 2048), and
(in version 6.3) each elliptic curve group (ECP 256 and
ECP 384). The sizes of these queues depend on the num-
ber of VPN configurations which have been enabled for
any given group. For instance, if a single configuration
is enabled for a group then that group will have queue
size of 2 and disabled groups have a queue size of 0. The
size of the nonce queue is set to be twice the aggregate
size of all of the DH queues. So, for instance, if only the
MODP 1024 group is configured, then the initial queue
size will be (MODP 1024=2, nonce=4). Or, if two VPN
configurations are set to use MODP 1024 and one config-
uration is set to use MODP 1536, initial queue size will be
(MODP 1024=4, MODP 1536=2, nonce=12). At initial
startup time, the system completely fills all the queues to
capacity and then sets a timer that fires every second to
refill the queues if any values have been used.9 If a nonce
or a DH key is ever requested when the queue is empty,
then a fresh value is generated on the fly.

Importantly, the queues are filled in priority order with
nonces being the highest priority followed by the groups
in descending order of cryptographic strength (ECP 384
down to MODP 768). This means that in many (but not

9Note: only one value is generated per second, so if several values
are used, it takes some time to refill the queue.

all) cases, the nonce for a given connection will precede
the keys for that connection in the random number se-
quence.

Figure 1 shows a (somewhat idealized) sequence of
generated values10, with the numbers indicating the order
in which they were generated before and after an IKE
DH exchange. Figure 1a shows the situation after startup:
The first four values are used to fill the nonce queue and
the next two values are used to generate the DH shares.
Thus, when the exchange happens, it uses value 1 for
the nonce and value 5 for the key, allowing the attacker
to derive the Dual EC state from value 1 and then com-
pute forward to find the DH private key. After a single
DH exchange, which requires DH key and one nonce,
the state is as shown in Figure 1b, with the new values
shaded. Note that the next-in-line values continue to have
the property that the nonce was generated before the DH
share. Because nonce computation is prioritized over key
generation, in this simple configuration where you have
a single DH group that is used for every handshake, then
as long as handshakes are done reasonably slowly (giving
the background task enough time to fill the queue) the
nonce used for a given handshake will always have been
generated prior to the DH key for that handshake. Of
course, if a large number exchanges are run in succes-
sion (i.e., outpacing the background task) it is possible to
exhaust both queues entirely, at which point the request
for a key or nonce will cause the value to be generated
immediately, resulting in the DH being computed before
the nonce.

5.4 Non-DH Phase 2 Exchanges
As noted above, the phase 2 exchange need not include
a new DH exchange; implementations can simply do a
nonce exchange and generate fresh keys (although Ju-
niper’s documentation recommends doing DH for phase
2 as well) [18, Page 72]. In this case, IKE will consume
an additional nonce from the nonce queue but not a new
DH key from the DH key queue. In the case where end-
points do a single phase 1 exchange and then a phase 2
exchange, with only the former doing DH, then setting
up a VPN connection setup consumes two nonces and
one DH key. However, because the nonce queue is twice
as large as the DH queue, as long as the refill timer fires
reasonably often with respect to the handshakes it is not
possible to exhaust the nonce queue (thus causing a fresh

10For simplicity, we represent multiple consecutive invocations of the
RNG as a single value and ignore invocations of the RNG for non-IKE
purposes. In addition, because the queues are refilled asynchronously
with respect to the IKE exchanges, there is a race condition between
values being consumed and being refreshed. The pattern shown here and
below is the result of assuming that the timer fires between handshakes.
If it fires more frequently (i.e., between each DH and nonce encoding),
then the nonces become even and the DH shares become odd. Mixed
patterns are also possible.

6



1 2 3 4 Nonces

5 6 MODP
1024

(a) At system startup

2 3 4 7 Nonces

6 8 MODP
1024

(b) After a DH exchange

Figure 1: Nonce queue behavior during an IKE handshake. Numbers indicate generation order, and values generated after the
handshake are highlighted. During a DH exchange, outputs 1 and 5 are used as the nonce and key, advancing the queue, and new
outputs are generated to fill the end of the queue.

PRNG value to be generated) while there is still a stale
DH value in the DH queue. Note that if the nonce and
DH queues were the same size, then non-DH phase 2
exchanges would frequently cause keys to be stale with
respect to the nonce.

In addition, if multiple non-DH phase 2 exchanges are
done within a single phase 1 exchange, then it is possible
to empty the nonce queue while there are still values in the
DH queue. In this case, it will only be possible to decrypt
connections established using those values if the attacker
has recorded previous nonces, rather than decrypting a
connection in isolation. Similarly, the current nonces
could be used to decrypt future connections but not the
connections they are transmitted with.

5.5 Multiple Groups
In addition, if the device is configured to use multiple
groups, then it is possible to have the shares for one group
become stale with respect to the nonces queue, as shown
in Figure 2, which shows the result of eight MODP 2048
exchanges on the queues. The shaded MODP 1024 values
were all generated before any of the remaining nonces. If
the attacker starts listening at this point and observes a
MODP 1024 exchange, he will not be able to decrypt it.

13 15 17 19 Nonces

26 28 MODP
2048

11 12 MODP
1024

21 23 25 27

Figure 2: Queue state after 8 MODP 2048 exchanges. Numbers
indicate generation order, and stale values are highlighted. If
several connections have been made to the same DH group, the
other DH group can grow stale as all nonces that were generated
before those keys are used up.

5.6 Recovering traffic keys
As described above, IKE comes in two versions (IKEv1
and IKEv2) which are slightly different. Furthermore,
each version uses a somewhat unusual two-phase ap-
proach to protecting traffic. In this section, we describe
the phases and the authentication modes that determine
whether or not protected traffic can be passively de-
crypted.

IKEv1, phase 1. IKEv1 defines four authentication
modes for phase 1: digital signatures, two modes using
public-key encryption, and preshared keys [15, Section 5].
Although the details vary, each mode computes a shared
secret, SKEYID derived from secret values (e.g., nonces
and Diffie–Hellman keys) exchanged in the handshake.
Next, the encryption keying material, SKEYIDe is derived
from SKEYID and finally the traffic keys used to protect
phase 2 are derived from that in an algorithm-specific
manner. Authentication keying material is derived in a
similar fashion, but since an adversary is primarily con-
cerned with decryption rather than authentication, we
omit discussion of authentication below except as it re-
lates to decryption.

• Authentication with digital signatures. In this
mode, the initiator and responder nonces and DH
public keys are exchanged in the clear. Starting with
the responder’s nonce, an attacker who can recover
the responder’s DH private key has all of the material
necessary to compute SKEYID and thus traffic keys.

• Authentication with public key encryption.
IKEv1 defines two public-key encryption modes for
authentication. The revised mode uses half the num-
ber of public-key encryptions and decryptions the
other mode uses, but are otherwise similar. In these
modes, the DH public keys are exchanged in the clear
but each peer encrypts its nonce using the other’s
public key. These modes require the initiator to know
the responder’s public key prior to the handshake.
Each peer decrypts the other’s nonce and computes

7



SKEYID. Since nonces are encrypted, even if an at-
tacker can recover the responder’s nonce (e.g., by
capturing a nonce in the clear from a previous con-
nection, recovering the Dual EC state, and walking
the generator forward), the initiator’s nonce is also
encrypted, thus stopping the attack.

• Authentication with preshared keys. In this mode,
a preshared key needs to be established out of band.
The DH public keys and nonces are exchanged in the
clear. The encryption keying material, SKEYIDe is
derived from the preshared key, the nonces, and the
DH keys. An attacker who can recover a DH private
key can perform an offline attack on the preshared
key. Depending on the strength of the PSK, this
process of recovering it may be trivial or may be
computationally intractable.11

IKEv1, phase 2. After phase 1 completes, there is a
second phase, called Quick Mode, which involves an-
other exchange of nonces and, optionally, another DH
exchange for forward secrecy [20]. As the messages
for phase 2 are protected by the keys established during
phase 1, there is no additional encryption. Thus, an at-
tacker who has successfully recovered the phase 1 keys
can decrypt phase 2 messages. At this point, if another
DH key exchange is used, the attacker can either run the
Dual EC-state-recovery attack again or simply walk the
Dual EC generator forward to recover the DH private key.
If only nonces are exchanged, then no additional work is
necessary. In either case, the attacker can compute the
traffic keys and recover plain text.

IKEv2, phase 1. A connection in IKEv2 begins by
exchanging two request/response pairs which form the
initial exchange. The first pair of messages, called
IKE_SA_INIT, exchange DH public keys and nonces
in the clear. The peers use these to compute a shared se-
cret, SKEYSEED, from which all traffic keys are derived.
These keys are used to protect the following messages.

This first exchange contains all of the information nec-
essary for the attacker to recover the Dual EC state and
compute a DH private key and thus derive SKEYSEED.
This stands in contrast to IKEv1 where the authentication
mode influences key derivation and hence, exploitability.

The second exchange, called IKE_AUTH, is encrypted
using keys derived from SKEYSEED and is used to au-
thenticate each peer, but plays no role in decryption. At
this point, a child security association (CHILD_SA) is set
up which can be used for protecting VPN traffic.

11Anecdotally, the preshared keys used in practice are often quite
weak. For example, FlyVPN’s “How To Setup L2TP VPN On An-
droid 4” instructs the user to “Input ‘vpnserver’ letters into ‘IPSec pre-
shared key.’ ” https://www.flyvpn.com/How-To-Setup-L2TP-
VPN-On-Android-4.html, retrieved February 18, 2016.

IKEv2, phase 2. IKEv2 does contain a second phase,
called CREATE_CHILD_SA, which can be used to create
additional child security associations. One use of this
phase is periodic rekeying. The use of a second phase is
optional.12

Similar to IKEv1’s second phase, nonces and, option-
ally, DH public keys are exchanged. As before, when
DH keys are used, an attacker may either perform the
Dual EC-state-recovery attack a second time or walk the
generator forward.

6 Exploiting the Vulnerability against IKE
To validate the attacks we describe above, we purchased a
Juniper NetScreen SSG-500M VPN device, and modified
the firmware version 6.3.0r12 in a manner similar to the
2012 attack. This required us to generate a point Q for
which we know the trapdoor (logP Q)−1, and to modify
the Dual EC Known Answer Test (KAT) correspondingly.
To install the firmware on the device, we further modi-
fied a non-cryptographic checksum contained within the
header of the firmware.13

Using the new firmware, we next configured the de-
vice with three separate VPN gateways: (1) configured
for IKEv1 with a PSK, (2) configured for IKEv1 with a
1024-bit RSA signing certificate, and (3) configured for
IKEv2 with a PSK. For each configuration, we initiated
VPN connections to the box using strongSwan [34]. By
capturing the resulting traffic, we were then able to extract
the nonces in the IKE handshakes and run the Dual EC
attack to recover the state of the random number generator
for each connection. As previously discussed, since the
32-byte nonces consist of the concatenation of two con-
secutive 30-byte Dual EC blocks, truncated to 32-bytes,
we used the first 30 bytes of the nonce to recover a poten-
tial state value, and then confirmed this guess against the
remaining 2 bytes of the nonce.

From this point, we generated a series of Dual EC
outputs to obtain a private exponent consistent with the
Diffie–Hellman public key observed in the traffic. This
required a single modular exponentiation per potential
exponent x, followed by a comparison to the extracted
key exchange payload value. Given the correct private
exponent, we then obtained the shared secret from the
initiator value, thereby determining the DH shared se-
cret gxy. Given the Diffie–Hellman shared secret, we
implemented the remaining elements of the IKEv1 and
IKEv2 standards [15, 20] in order to calculate the Phase 1
(Aggressive Mode) keying material (for IKEv1) and the

12“The second request/response (IKE_AUTH) transmits identities,
proves knowledge of the secrets corresponding to the two identities,
and sets up an SA for the first (and often only) AH and/or ESP
CHILD_SA” [20].

13If a certificate is installed on the device, firmware updates require
the presence of a valid digital signature on the new firmware. Since we
did not have a certificate installed, we were able to omit this signature.

8

https://www.flyvpn.com/How-To-Setup-L2TP-VPN-On-Android-4.html
https://www.flyvpn.com/How-To-Setup-L2TP-VPN-On-Android-4.html


corresponding IKE_SA_INIT/IKE_AUTH keying material
(for IKEv2). This information encrypts the subsequent
handshake messages, and is itself used to calculate the
key material for subsequent payloads, including Encap-
sulated Secure Payload (ESP) messages. A challenge in
the IKEv1 PSK implementation is the need to incorporate
an unknown PSK value into the PRF used to calculate
the resulting key material. For our proof of concept im-
plementation we used a known PSK, however without
knowledge of this value, an additional brute-force or dic-
tionary attack step would have been required. No such
problem exists for the IKEv1 certificate connections, or
for IKEv2 PSK.

Using the recovered key material, we next decrypt the
remaining traffic, which in each case embeds a second
Diffie–Hellman handshake with additional nonces and
Diffie–Hellman ephemeral public keys. Since this hand-
shake is also produced from the same generator, we can
simply wind the generator forward (or restart with a nonce
drawn from the second phase handshake) to recover the
corresponding Diffie–Hellman private keys. This new
shared secret can then be used to calculate the resulting
key material. All subsequent traffic that we see and de-
crypt utilized the Encapsulating Security Payload (ESP)
protocol [23] in tunnel mode.

7 Passively detecting Juniper ScreenOS
An adversary who knows the Dual EC Q parameter —
either Juniper’s nonstandard point or the point that was
introduced into ScreenOS unbeknownst to Juniper — may
wish to detect vulnerable versions of ScreenOS by pas-
sively watching network traffic. In theory, such an adver-
sary has several avenues open to it. The easiest approach
is to attempt the attack on every VPN connection to see if
the attack is successful. Alternatively, the adversary could
attempt to fingerprint VPN boxes and only perform the
attack on connections that match.

Dual EC is known to have a small, but nonnegligible,
bias. In particular, Schoenmakers and Sidorenko [32]
and Gjøsteen [12] give a procedure to distinguish 30-
byte blocks generated uniformly at random from those
generated by Dual EC. The basic idea is to count how
many points on the curve have x-coordinates that agree
with the 30-byte block in their least-significant 30-bytes.
In both the uniformly at random case and the Dual EC
case, the number of points on the curve that match follow
a normal distribution. In order to use the this distinguisher,
one needs to see a sufficient number of 30-byte blocks
(in the form of IKE nonces) to state with high confidence
that the blocks came from one distribution or the other.

We empirically computed the parameters of these two
distributions to see how difficult this task is. We gen-
erated 2 million 30-byte blocks using Dual EC and an
additional 2-million blocks uniformly at random and per-

formed the point counting. We estimate the distributions’
parameters by fitting the data using maximum likelihood
estimation. The results are not encouraging. When gen-
erated uniformly at random, the number of points on the
curve that agree with the generated block have param-
eters µ = 65536.02 and σ = 256.05. When generated
using Dual EC, the parameters are µ = 65536.78 and
σ = 256.06. This approach is unlikely to work without
seeing tens or hundreds of thousands of connections.

Interestingly, ScreenOS’s Dual EC implementation
has a bug that makes the adversary’s job much eas-
ier. ScreenOS contains a customized version of
OpenSSL and uses OpenSSL’s elliptic curve and arbitrary-
precision (BIGNUM) routines to implement Dual EC.
The OpenSSL function to convert a BIGNUM to an
array of bytes is BN_bn2bin(). Due to a design de-
fect in OpenSSL’s API, there is no way to correctly use
BN_bn2bin without first determining how many bytes it
will use — using BN_num_bytes()— and zero-padding,
and only then using BN_bn2bin():14

int size = BN_num_bytes(x);
memset(buffer, 0, 30 - size);
BN_bn2bin(x, buffer + size);

ScreenOS’s Dual EC implementation omits the zero-
padding when converting from BIGNUMs to binary out-
put. The upshot is that neither the first nor the thirty-first
byte of a nonce will ever be a zero byte.

Thus, if the adversary ever sees a zero byte in either
position, it can conclude that the implementation is not
Juniper’s Dual EC.

If the nonces are generated uniformly at random, then
we expect each of these bytes to be zero with (indepen-
dent) probability 1/256. Thus, the probability that after
n nonces without zeros in those positions, the nonce was
generated uniformly at random is 1− (255/256)2n.

This bug does not affect the exploitability of the
Dual EC generator; however, it can lead to a few ad-
ditional potential internal states to check as described in
Section 2.

8 Discussion
A significant amount of attention has been paid to the
2012 compromise of Juniper’s ScreenOS source code by
unknown parties. In this paper we have shown that the
vulnerabilities announced by Juniper can be traced largely
to the pre-existing design of Juniper’s ScreenOS random
number generator. Specifically, we argue that Juniper’s
design is exploitable due to a series of deliberate design
decisions, accidents, and oversights on the part of the
ScreenOS developers.

14This defect was corrected quite recently, years after the version of
OpenSSL ScreenOS uses was written. https://mta.openssl.org/
pipermail/openssl-commits/2016-February/003520.html

9

https://mta.openssl.org/pipermail/openssl-commits/2016-February/003520.html
https://mta.openssl.org/pipermail/openssl-commits/2016-February/003520.html


Listing 2: The core ScreenOS 6.1 PRNG subroutine.

1 void prng_generate(char *output) {
2 unsigned int index;
3 int time[2];
4
5 index = 0;
6 // FIPS checks removed for clarity
7 if ( blocks_generated_since_reseed++ > 9999 )
8 prng_reseed();
9 // FIPS checks removed for clarity

10 time[0] = 0;
11 time[1] = get_cycles();
12 do {
13 // FIPS checks removed for clarity
14 prng_generate_block(time, prng_seed, prng_key, prng_block);
15 // FIPS checks removed for clarity
16 memcpy(&output[index], prng_output_block, min(20-index, 8));
17 index += min(20-index, 8);
18 } while ( index <= 19 );
19 }

Below we review each of the conditions that are re-
quired to produce an exploitable PRNG in the Juniper
system:

1. Implementation of Dual EC. The cascade design
of Juniper’s double PRNG, which employs Dual EC
to seed the RNG on each call seems a surpris-
ing choice, given the performance limitations of
Dual EC. Notably, the transition from ScreenOS 6.1
(ANSI only) to 6.2 (Dual EC and ANSI) involved
the addition of a nonce pre-generation queue to the
existing DH key queues.15 One potential motivation
for this change could be the additional security assur-
ance provided by Dual EC. However, it is surprising
to note that Juniper did not seek FIPS certification
of the Dual EC generator, despite the fact that fol-
lowing the deprecation of the ANSI X9.31 generator
on January 1, 2016, it would have been the only
FIPS-certified PRNG in their product.16

2. Presence of a Dual EC/ANSI cascade flaw. Even
with Dual EC present in the ScreenOS devices, the
use of a cascade between Dual EC and ScreenOS
should have prevented the known state recovery at-
tacks. As detailed in Section 4, this protection is not
available due to flaws in the cascade implementa-
tion, which allows for the exfiltration of unprocessed

15To give a rough estimate of the performance difference, we imple-
mented Dual EC and ANSI X9.31 using the same procedure used in
ScreenOS and measured how long it takes to generate 32-byte blocks.
Dual EC takes roughly 125 times as long as X9.31.

16A review of the CMVP certification lists [29] shows that all
ScreenOS FIPS certification certificates have indeed been de-listed as
of February 2016.

Dual EC output. This flaw is particularly perplex-
ing. Compare the prng_generate() function in
version 6.1 (Listing 2) with the analogous function
in version 6.2 (Listing 1). Apart from minor changes
arising from moving from generating 20 bytes at a
time to generating 32 bytes at a time and always
reseeding rather than reseeding based on a counter,
the functions look quite similar. However, for some
reason, the loop index variable was changed from a
local variable to a global variable.

3. Always reseeding. In version 6.1, ScreenOS re-
seeded the X9.31 PRNG from system entropy every
10000 calls (hardcoded; see Listing 2). However,
in version 6.2, the reseeding mechanism was repur-
posed to produce the cascade by always reseeding.
When combined with the cascade flaw described
above, all PRNG output comes from Dual EC, in-
creasing the probability that a specific value ob-
served by the attacker can be used to recover PRNG
state.

4. Use of 32-byte IKE nonces. The IKE standards do
not provide a specific recommendation for nonce
length, stating only that nonces should be between
8 and 256 bytes, and that nonces should be at least
half the key size of the PRF used. The last ver-
sion of ScreenOS without Dual EC was 6.1.0r7
and specified 20 byte nonces. In the subsequent
release, ScreenOS 6.2.0r1, Juniper developers added
Dual EC and modified the IKE nonce size from 20
to 32 bytes. Efficiently recovering the state of the
Dual EC generator requires at a minimum 26 bytes
of unprocessed PRNG output, and as discussed in

10



Section 5.2, having greater than 30 bytes expedites
the state recovery attack.

5. Modifying the order of nonce and key generation.
The ScreenOS IKEv1 and IKEv2 implementations
both output IKE Key Exchange prior to the IKE
Nonce packet. However, this output order does not
reflect the generation order of the same values in all
versions of ScreenOS. In particular, the addition of
nonce queues in ScreenOS 6.2.0r1 effectively guar-
antees that in most cases a non-loaded system will
generate a nonce immediately prior to the Diffie–
Hellman private key that will be used in a given
handshake. In practice, this facilitates state recov-
ery attacks that can recover secret keys (and thus
enable decryption) within a single IKE handshake,
significantly improving the effectiveness of passive
attacks.

All told, in the course of a single version revision, Ju-
niper made a series of changes that combined to produce
a system which only required the attacker to know the
discrete log of Q to be exploitable. See Table 1 for a
summary of changes. For a randomly-selected Q, or a
point chosen using the nothing-up-my-sleeve process pro-
posed in ANS X9.82 [2], calculating d is likely to be
infeasible. We have no way to evaluate the likelihood
that some party knows d for Juniper’s non-standard Q
point, except to note that Juniper does not appear to have
used any of the recommendations presented in the NIST
standard [28]. Based on the conclusions of Juniper’s 2012
vulnerability report [17], however, it does seem reason-
able to assume that the 2012 attacker-generated Q′ was
maliciously generated.

Regardless of the causes, these ScreenOS vulnerabil-
ities provide an important lesson for the design of cryp-
tographic systems. By far the most attractive feature of
the ScreenOS PRNG attack, from the perspective of an at-
tacker, is the ability to significantly undermine the security
of ScreenOS without producing any externally-detectable
indication that would reveal that ScreenOS devices were
vulnerable. This is in marked contrast to previous well-
known PRNG failures, such as the Debian PRNG flaw,
that were detected through observational testing. Indeed,
the versions of ScreenOS containing an attacker-supplied
parameter appear to have produced output that was crypto-
graphically indistinguishable from the output of previous
versions. Thus, preventing any testing or measurement
from discovering the issue.

In Section 3, we asked four questions which we repro-
duce here, along with their answers:

1. Why does a change in Q result in a passive VPN
decryption vulnerability? If an attacker is able to
replace Q with a value of their choice, they can

predict the (EC)DH keys which are used to establish
the VPN traffic keys, thus decrypting VPN traffic.

2. Why doesn’t Juniper’s use of X9.31 protect their
system against compromise of Q? In the default
configuration, the X9.31 PRNG is never run, and
Dual EC output is sent directly to the network in the
form of nonces. These nonces can be used to extract
the Dual EC state and predict future outputs.

3. What is the history of the PRNG code in ScreenOS?
Version 6.1 contained a conventional X9.31-based
PRNG which was replaced with a two-stage PRNG
based on Dual EC. That same version made a num-
ber of other changes to the PRNG and IKE code
which combine to make ScreenOS vulnerable to a
Q-replacement attack.

4. How was Juniper’s Q value generated? We are un-
able to answer this question. In normal cases, the
distribution of a maliciously-generated Q is iden-
tical to the distribution of a random Q. There do,
however, exist techniques for verifiably generating
safe Q points such that no attacker is likely to know
the discrete log (one such procedure is described
in [2]). If Juniper employed such a technique, it
is still possible that a thorough review of historical
documentation might provide evidence that such a
technique was used.

5. Is the version of ScreenOS with Juniper’s authorized
Q vulnerable to attack? We are unable to answer
this question definitively. As demonstrated in this
paper, an attacker who knows the discrete log of Ju-
niper’s Q would be able to decrypt traffic. However,
because we do not know the details of Juniper’s Q-
generation procedure, we are unable to determine if
such attackers exist.

9 Related Work
Dual EC. The history of the Dual EC random number
generator was described by Checkoway et al. [7]. By
2006, it was already clear that the generator output has
biases in its output that make it unsuitable for deployment,
through work by Gjøsteen [12] and by Schoenmakers and
Sidorenko [32]. Shumow and Ferguson’s presentation at
the Crypto 2007 rump session [33] further made clear that
someone in possession of the discrete logarithm of Q to
base P and who saw raw output from the generator would
be able to reconstruct its internal state and predict all fu-
ture outputs. Nevertheless, Dual EC was adopted as part
of NIST’s SP 800-90A standard [4], and was not with-
drawn until 2015 [5], following reporting based on the
Snowden documents [30] that suggested that the Dual EC
backdoor might be intentional. A remarkable presentation

11



Table 1: ScreenOS features by version.

Reseed period Nonce size DH groups
Version PRNG (calls) Reseed bug DH queue Nonce queue (bytes) supported

6.1.0 X9.31 10000 X 20 MODP 768, 1024, 1536, 2048
6.2.0 Dual EC + X9.31 1 X X X 32 MODP 768, 1024, 1536, 2048
6.3.0 Dual EC + X9.31 1 X X X 32 MODP 768, 1024, 1536, 2048,

ECP 256, 384

Between versions 6.1.0 and 6.2.0, a cluster of changes were made to the PRNG and IKE subsystems. In the PRNG subsystem,
the switch to (1) Dual EC + X9.31; (2) reseeding on every call; and (3) the bug in reseed that causes X9.31 to be skipped produce
the necessary conditions to attack IKE. In the IKE subsystem, changing the nonce size from 20 bytes to 32 bytes moves the attack
from completely impractical to nearly best-case scenario, from an attacker’s point of view. The introduction of a nonce queue
changes the nature of the attack such that, in the usual case, an attacker can decrypt a session based solely on that session’s traffic.

Version 6.3.0 is nearly identical to 6.2.0 but supports elliptic curve Diffie–Hellman groups. In contrast to the changes between
6.1.0 and 6.2.0, this may actually make an attacker’s job harder; see Section 5.5.

by John Kelsey gives a postmortem of Dual EC standard-
ization from NIST’s perspective [21].

Our analysis in Section 4 shows that Juniper adopted
Dual EC in 2008. In 2013, NIST’s reopening SP 800-90A
for comments led Juniper to publish a knowledge base
article explaining that ScreenOS uses Dual EC, but “in a
way that should not be vulnerable to the possible issue that
has been brought to light,” because of the custom Q and
because Dual EC output is filtered through X9.31 [19].
As our analysis shows, at the time that Juniper made this
statement, the Q generator shipping in ScreenOS was
the one introduced in the unauthorized 2012 change. In
January 2016, Juniper announced that it would remove
Dual EC from its ScreenOS products in “the first half of
2016” [35].

Randomness failures. Many instances of randomness
failures in widely deployed systems have been reported.
In 1996, Goldberg and Wagner showed that the Netscape
browser seeded its PRNG insecurely, allowing SSL traffic
to be decrypted [13].

Between 2006 and and 2008, Linux systems run-
ning the Debian distribution or its derivatives (including
Ubuntu) shipped a modified version of the OpenSSL li-
brary that failed to incorporate entropy from the kernel
into its own entropy pool. The available entropy was then
low enough under normal conditions that the keys that af-
fected systems generate could be exhaustively enumerated
and identified over the network [36].

Heninger et al. [16] performed a pairwise GCD on RSA
moduli obtained from scanning the IPv4 address space,
finding many shared factors and weak keys; the root cause
of the failure was the lack of entropy available shortly af-
ter boot in many network devices. Kim et al. [25] showed
that a related problem affected OpenSSL on Android.

Bernstein et al. showed that randomness failures in
smart cards allowed private keys to be recovered using
lattice attacks [6].

Design of PRNGs. A line of work beginning with
Kelsey et al. [22] and continuing to today [8, 9]. has
sought to formalize the security desiderata for PRNGs
used as part of cryptographic systems, and to evaluate
deployed PRNGs against these desiderata. Gutterman
et al. [14] and, later, Lacharme et al. [26] analyzed the
Linux randomness system, and Dorrendorf et al. [10]
analyzed that of Windows.

As new use cases arose, the security desiderata have
been revised and expanded. For example, Ristenpart and
Yilek analyzed application-level randomness reuse in vir-
tual machines whose state is reset and rolled back [31],
and Everspaugh et al. [11] extended the analysis to kernel-
level randomness.

10 Summary

Following Juniper’s disclosure of unauthorized code in
their ScreenOS VPN, we reverse engineered multiple
versions of ScreenOS to determine exactly what had hap-
pened. We find that while the proximal cause of the
vulnerability was the replacement of the Q parameter
from the Dual EC PRNG, the attack was only possi-
ble due to the interaction of a cluster of changes made
by Juniper in the 6.2 version of ScreenOS released in
2008. Those changes included replacing their conven-
tional X9.31 PRNG with a two-stage PRNG which is
described as using Dual EC to seed the X9.31 PRNG;
in fact, however, in the default configuration the X9.31
PRNG never executes and Dual EC values are output di-
rectly from the PRNG subsystem. Taken together with a
number of changes to the IKE implementation, this PRNG
structure enables an attacker who knows the discrete log
of Q to passively decrypt IKE handshakes and the IPsec
traffic protected with keys derived from those handshakes.
We have validated the results of our binary analysis by
testing a modified ScreenOS binary with our own value Q
(for which we have the discrete log) and verifying that we
can decrypt the results of IKEv1 and IKEv2 handshakes.

12



References
[1] Accredited Standards Committee (ASC) X9, Finan-

cial Services. ANS X9.31-1998: Digital signatures
using reversible algorithms for the financial services
industry (rDSA), 1998. Withdrawn.

[2] Accredited Standards Committee (ASC) X9, Finan-
cial Services. ANS X9.82-3-2007: Random number
generation, part 3: Deterministic random bit genera-
tors, 2007.

[3] Anonymized for submission. Anonymized for sub-
mission, Dec. 2015.

[4] E. Barker and J. Kelsey. NIST Special Publication
800-90A: Recommendation for Random Number
Generation Using Deterministic Random Bit Gen-
erators. Technical report, National Institute of Stan-
dards and Technology, 2006.

[5] E. Barker and J. Kelsey. NIST Special Publication
800-90A Revision 1: Recommendation for Random
Number Generation Using Deterministic Random
Bit Generators. Technical report, National Institute
of Standards and Technology, June 2015.

[6] D. J. Bernstein, Y.-A. Chang, C.-M. Cheng, L.-P.
Chou, N. Heninger, T. Lange, and N. Someren. Fac-
toring RSA Keys from Certified Smart Cards: Cop-
persmith in the Wild. In ASIACRYPT ’13, pages
341–360. Springer, 2013. ISBN 978-3-642-42045-0.
doi: 10.1007/978-3-642-42045-0_18.

[7] S. Checkoway, R. Niederhagen, A. Everspaugh,
M. Green, T. Lange, T. Ristenpart, D. J. Bernstein,
J. Maskiewicz, H. Shacham, and M. Fredrik-
son. On the practical exploitability of Dual EC
in TLS implementations. In Proceedings of
USENIX Security 2014, pages 319–335. USENIX
Association, Aug. 2014. URL https://www.
usenix.org/conference/usenixsecurity14/technical-
sessions/presentation/checkoway.

[8] Y. Dodis, D. Pointcheval, S. Ruhault, D. Vergnaud,
and D. Wichs. Security analysis of pseudo-random
number generators with input: /dev/random is not
robust. In Proceedings of CCS 2013. ACM Press,
Nov. 2013.

[9] Y. Dodis, A. Shamir, N. Stephens-Davidowitz, and
D. Wichs. How to eat your entropy and have it too–
optimal recovery strategies for compromised rngs.
In Advances in Cryptology–CRYPTO 2014, pages
37–54. Springer, 2014.

[10] L. Dorrendorf, Z. Gutterman, and B. Pinkas. Crypt-
analysis of the random number generator of the win-
dows operating system. ACM Transactions on In-
formation and System Security (TISSEC), 13(1):10,
2009.

[11] A. Everspaugh, Y. Zhai, R. Jellinek, T. Ristenpart,
and M. Swift. Not-so-random numbers in virtualized
linux and the whirlwind rng. In Security and Privacy

(SP), 2014 IEEE Symposium on, pages 559–574.
IEEE, 2014.

[12] K. Gjøsteen. Comments on Dual-EC-DRBG/NIST
SP 800-90, draft December 2005, Mar. 2006.
URL http://www.math.ntnu.no/~kristiag/drafts/dual-
ec-drbg-comments.pdf.

[13] I. Goldberg and D. Wagner. Randomness and the
Netscape Browser. Dr. Dobb’s Journal, 1996.

[14] Z. Gutterman, B. Pinkas, and T. Reinman. Analysis
of the linux random number generator. In Security
and Privacy, 2006 IEEE Symposium on, pages 15–
pp. IEEE, 2006.

[15] D. Harkins and D. Carrel. The Internet Key Ex-
change (IKE). RFC 2409 (Proposed Standard), Nov.
1998. URL http://www.ietf.org/rfc/rfc2409.txt. Ob-
soleted by RFC 4306, updated by RFC 4109.

[16] N. Heninger, Z. Durumeric, E. Wustrow, and J. A.
Halderman. Mining your ps and qs: Detection of
widespread weak keys in network devices. In Pro-
ceedings of the 21st USENIX Conference on Secu-
rity Symposium, Security’12, pages 35–35, Berkeley,
CA, USA, 2012. USENIX Association. URL http:
//dl.acm.org/citation.cfm?id=2362793.2362828.

[17] Juniper. 2015-12 Out of Cycle Security Bulletin:
ScreenOS: Multiple Security issues with ScreenOS
(CVE-2015-7755, CVE-2015-7756), Dec. 15.
URL https://kb.juniper.net/InfoCenter/index?page=
content&id=JSA10713&cat=SIRT_1&actp=LIST.

[18] Concepts & Examples ScreenOS Reference
Guide: Virtual Private Networks. Juniper
Networks, rev. 02 edition, Dec. 2012. URL
http://www.juniper.net/techpubs/software/
screenos/screenos6.3.0/630_ce_VPN.pdf.

[19] Juniper Networks. Juniper Networks product
information about Dual_EC_DRBG. Knowledge
Base Article KB28205, Oct. 2013. Online:
https://web.archive.org/web/20151219210530/
https://kb.juniper.net/InfoCenter/index?page=
content&id=KB28205&pmv=print&actp=LIST.

[20] C. Kaufman. Internet Key Exchange (IKEv2) Pro-
tocol. RFC 4306 (Proposed Standard), Dec. 2005.
URL http://www.ietf.org/rfc/rfc4306.txt. Obsoleted
by RFC 5996, updated by RFC 5282.

[21] J. Kelsey. Dual EC in X9.82 and SP 800-90A.
Presentation to NIST VCAT committee. Available
at http://csrc.nist.gov/groups/ST/crypto-review/
documents/dualec_in_X982_and_sp800-90.pdf,
May 2014.

[22] J. Kelsey, B. Schneier, D. Wagner, and C. Hall.
Cryptanalytic attacks on pseudorandom number gen-
erators. In FSE ’98, pages 168–188. Springer, 1998.
ISBN 978-3-540-69710-7. doi: 10.1007/3-540-
69710-1_12.

[23] S. Kent. IP Encapsulating Security Payload (ESP).

13

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/checkoway
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/checkoway
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/checkoway
http://www.math.ntnu.no/~kristiag/drafts/dual-ec-drbg-comments.pdf
http://www.math.ntnu.no/~kristiag/drafts/dual-ec-drbg-comments.pdf
http://www.ietf.org/rfc/rfc2409.txt
http://dl.acm.org/citation.cfm?id=2362793.2362828
http://dl.acm.org/citation.cfm?id=2362793.2362828
https://kb.juniper.net/InfoCenter/index?page=content&id=JSA10713&cat=SIRT_1&actp=LIST
https://kb.juniper.net/InfoCenter/index?page=content&id=JSA10713&cat=SIRT_1&actp=LIST
http://www.juniper.net/techpubs/software/screenos/screenos6.3.0/630_ce_VPN.pdf
http://www.juniper.net/techpubs/software/screenos/screenos6.3.0/630_ce_VPN.pdf
https://web.archive.org/web/20151219210530/https://kb.juniper.net/InfoCenter/index?page=content&id=KB28205&pmv=print&actp=LIST
https://web.archive.org/web/20151219210530/https://kb.juniper.net/InfoCenter/index?page=content&id=KB28205&pmv=print&actp=LIST
https://web.archive.org/web/20151219210530/https://kb.juniper.net/InfoCenter/index?page=content&id=KB28205&pmv=print&actp=LIST
http://www.ietf.org/rfc/rfc4306.txt
http://csrc.nist.gov/groups/ST/crypto-review/documents/dualec_in_X982_and_sp800-90.pdf
http://csrc.nist.gov/groups/ST/crypto-review/documents/dualec_in_X982_and_sp800-90.pdf


RFC 4303 (Proposed Standard), Nov. 2005. URL
http://www.ietf.org/rfc/rfc4303.txt.

[24] S. Kent and K. Seo. Security architecture for the
Internet Protocol, Dec. 2005. URL https://tools.ietf.
org/html/rfc4301.

[25] S. H. Kim, D. Han, and D. H. Lee. Predictability
of android openssl’s pseudo random number gen-
erator. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications secu-
rity, pages 659–668. ACM, 2013.

[26] P. Lacharme, A. Röck, V. Strubel, and M. Videau.
The linux pseudorandom number generator revisited.
Cryptology ePrint Archive, Report 2012/251, 2012.
https://eprint.iacr.org/.

[27] H. Moore. CVE-2015-7755: Juniper ScreenOS
Authentication Backdoor. https://community.rapid7.
com/community/infosec/blog/2015/12/20/cve-
2015-7755-juniper-screenos-authentication-
backdoor, Dec. 2015.

[28] National Institute of Standards and Technology.
NIST opens draft Special Publication 800-90A, rec-
ommendation for random number generation using
deterministic random bit generators for review and
comment. http://csrc.nist.gov/publications/nistbul/
itlbul2013_09_supplemental.pdf, Sept. 2013.

[29] National Institute of Standards and Technol-
ogy. CMVP historical validation list, Feb.
2016. URL http://csrc.nist.gov/groups/STM/cmvp/
documents/140-1/140val-historical.htm. Retrieved
February 18, 2016.

[30] N. Perlroth, J. Larson, and S. Shane. N.S.A.
able to foil basic safeguards of privacy on web.

The New York Times, September 5 2013. On-
line: http://www.nytimes.com/2013/09/06/us/nsa-
foils-much-internet-encryption.html.

[31] T. Ristenpart and S. Yilek. When good randomness
goes bad: Virtual machine reset vulnerabilities and
hedging deployed cryptography. In NDSS, 2010.

[32] B. Schoenmakers and A. Sidorenko. Cryptanalysis
of the Dual Elliptic Curve pseudorandom generator.
Cryptology ePrint Archive, Report 2006/190, 2006.
URL http://eprint.iacr.org/.

[33] D. Shumow and N. Ferguson. On the possibility of
a back door in the NIST SP800-90 Dual Ec Prng.
Presented at the CRYPTO 2007 rump session, Aug.
2007. URL http://rump2007.cr.yp.to/15-shumow.
pdf.

[34] strongSwan. strongSwan: the opensource IPsec-
based VPN solution, Nov. 2015. URL https://www.
strongswan.org/.

[35] B. Worrall. Advancing the security of Juniper prod-
ucts. Online: http://forums.juniper.net/t5/Security-
Incident-Response/Advancing-the-Security-of-
Juniper-Products/ba-p/286383, Jan. 2016.

[36] S. Yilek, E. Rescorla, H. Shacham, B. Enright, and
S. Savage. When private keys are public: Results
from the 2008 Debian OpenSSL vulnerability. In
A. Feldmann and L. Mathy, editors, Proceedings of
IMC 2009, pages 15–27. ACM Press, Nov. 2009.

[37] T. Ylonen and C. Lonvick. The Secure Shell (SSH)
Protocol Architecture. RFC 4251 (Proposed Stan-
dard), Jan. 2006. URL http://www.ietf.org/rfc/
rfc4251.txt.

14

http://www.ietf.org/rfc/rfc4303.txt
https://tools.ietf.org/html/rfc4301
https://tools.ietf.org/html/rfc4301
https://eprint.iacr.org/
https://community.rapid7.com/community/infosec/blog/2015/12/20/cve-2015-7755-juniper-screenos-authentication-backdoor
https://community.rapid7.com/community/infosec/blog/2015/12/20/cve-2015-7755-juniper-screenos-authentication-backdoor
https://community.rapid7.com/community/infosec/blog/2015/12/20/cve-2015-7755-juniper-screenos-authentication-backdoor
https://community.rapid7.com/community/infosec/blog/2015/12/20/cve-2015-7755-juniper-screenos-authentication-backdoor
http://csrc.nist.gov/publications/nistbul/itlbul2013_09_supplemental.pdf
http://csrc.nist.gov/publications/nistbul/itlbul2013_09_supplemental.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-historical.htm
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-historical.htm
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
http://eprint.iacr.org/
http://rump2007.cr.yp.to/15-shumow.pdf
http://rump2007.cr.yp.to/15-shumow.pdf
https://www.strongswan.org/
https://www.strongswan.org/
http://forums.juniper.net/t5/Security-Incident-Response/Advancing-the-Security-of-Juniper-Products/ba-p/286383
http://forums.juniper.net/t5/Security-Incident-Response/Advancing-the-Security-of-Juniper-Products/ba-p/286383
http://forums.juniper.net/t5/Security-Incident-Response/Advancing-the-Security-of-Juniper-Products/ba-p/286383
http://www.ietf.org/rfc/rfc4251.txt
http://www.ietf.org/rfc/rfc4251.txt

	Introduction
	Dual EC Background
	History of the Juniper Incident
	The ScreenOS Random Number Generator
	Interaction with IKE
	Overview of IKE
	Nonce Size
	Nonces and DH Keys
	Non-DH Phase 2 Exchanges
	Multiple Groups
	Recovering traffic keys

	Exploiting the Vulnerability against IKE
	Passively detecting Juniper ScreenOS
	Discussion
	Related Work
	Summary

